

AWS Fargate with App::FargateStack
A Builder's Guide

By Rob Lauer

Version 1.0.34

What Is Fargate?
AWS Fargate is a serverless, pay-as-you-go compute engine that lets you run containers
without managing servers or clusters. It sits at the heart of the AWS container ecosystem,
offering a powerful middle ground between the raw control of EC2 instances and the
high-level abstraction of services like AWS App Runner. Its unique and compelling power
comes from this position: Fargate handles all the underlying infrastructure management—the
patching, scaling, and securing of servers—so you can focus purely on your application,
packaged as a container. It's the "just run my container" service that developers have always
wanted, combining the simplicity of serverless with the power of container orchestration.

Think of AWS Fargate as a powerful set of Legos. You can build almost any containerized
application with it, but first, you have to assemble all the foundational plumbing—the
networking, roles, security groups, and service definitions. This initial setup involves a lot of
friction and deep knowledge, which is often why architects look to other solutions.

What is App::FargateStack?
App::FargateStack is like an expert builder that assembles that standard plumbing for you,
following best practices. It lets you get straight to your main goal: deploying your
containerized application. When it's done, it hands you a transparent box where you can see
all the gears and springs working together. There's no magic; it's all right there in front of you.

This guide is for anyone who wants to build on that solid foundation.

This book is for you if:

●​ You are an Architect or DevOps Engineer who understands the plumbing but wants
to automate the tedious, repetitive assembly process with a tool that is both powerful
and transparent.

●​ You are a Developer whose primary goal is to deploy a container. You don't necessarily
need to know how every piece of the plumbing works on day one, but you value a tool
that builds it correctly and doesn't hide the details, allowing you to learn and grow.

●​ You are learning AWS Fargate and want to see what a production-ready stack looks
like "under the hood." This guide uses a real-world framework to teach you the
components of a robust Fargate deployment.

The App::FargateStack Philosophy
This framework—and by extension, this guide—is not anti-shortcut. In fact, App::FargateStack
is a powerful shortcut.

The distinction is the kind of shortcut it provides. It is a professional accelerator, not a fragile,
opaque hack. It's for those who want a shortcut to a correct and maintainable solution, not

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 2

just any solution that happens to work right now.

If you appreciate tools that automate complexity without sacrificing transparency, then you've
come to the right place.

Welcome. Let's get building.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 3

AWS Fargate with App::FargateStack​ 1
A Builder's Guide​ 1

By Rob Lauer​ 1
Version 1.0.34What Is Fargate?​ 1

What is App::FargateStack?​ 2
The App::FargateStack Philosophy​ 2
Preface: Why Fargate Deserves a Second Look​ 6

The Simplicity of Intent​ 6
Fargate vs. EC2: A Clear Choice​ 7
The Cost Argument: Pay for What You Use​ 8
Where App::FargateStack Fits In​ 9

Chapter 1: Introduction to App::FargateStack​ 10
What is App::FargateStack?​ 10
The Core Philosophy: Configuration as State​ 10
The plan and apply Workflow​ 10

Chapter 2: Your First Stack - A Guided Tutorial​ 12
Step 1: Creating the Configuration with create-stack​ 12
Step 2: Planning the Infrastructure with plan​ 12
Step 3: Provisioning the Stack with apply​ 14
Step 4: Launching and Verifying the Service​ 15

Chapter 3: The Configuration File in Detail​ 18
Top-Level Configuration​ 18
The tasks Section​ 18

Chapter 4: Core Workload Patterns​ 21
4.1 Understanding Task Types​ 21
4.2 Daemon Services​ 21
4.3 Tasks: Ad-Hoc and Scheduled Jobs​ 22

Ad-Hoc Jobs​ 23
Scheduled Jobs​ 23

4.4 HTTP & HTTPS Services​ 25
Architectural Flow​ 26

Chapter 5: Advanced Topics & Integrations​ 28
5.1 Networking: VPC and Subnet Discovery​ 28

VPC Discovery​ 28
Subnet Categorization​ 28

5.2 Security: IAM, Security Groups, and Secrets​ 29
IAM Roles and Policies​ 29
Security Groups​ 29
Injecting Secrets from Secrets Manager​ 29

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 4

S3 Buckets​ 32
EFS File Systems​ 32

Automating Network Access with authorize_ingress​ 33
5.4 Messaging: SQS Queues​ 33

Custom Queue Attributes​ 34
5.5 Environment Variables & Secrets​ 35

The environment Block: For Non-Sensitive Configuration​ 35
The secrets Block: For Sensitive Credentials​ 35

Chapter 6: Command Reference​ 37
Core Workflow Commands​ 37

plan​ 37
apply​ 37

Service & Task Lifecycle Commands​ 37
start-service​ 37
stop-service​ 37
redeploy​ 37
run-task​ 38
stop-task​ 38

State & Information Commands​ 38
status​ 38
list-tasks​ 38
logs​ 38
state​ 38

Configuration & Definition Commands​ 38
create-stack​ 39
register-task-definition​ 39
update-service​ 39

Chapter 7: Continue Your Fargate Journey​ 40
Valuable Resources for Deeper Learning​ 40
Join the Community​ 40

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 5

Preface: Why Fargate Deserves a Second Look
In a world filled with complex container orchestration platforms, it's easy to overlook the
elegant power of simpler solutions. AWS Fargate is often dismissed far too quickly, lost in the
noise of the Kubernetes bandwagon. This guide—and the App::FargateStack framework it
documents—is built on a simple premise: for the vast majority of containerized workloads,
Fargate is the smarter, faster, and more cost-effective choice.

The primary motivation behind App::FargateStack was to make provisioning Fargate tasks
simple, fast, and easy. By doing so, we hope to evangelize a versatile service that deserves a
more prominent place in every cloud architect's toolbox.

The Simplicity of Intent
Imagine you want to run a background worker. With App::FargateStack, your entire initial
thought process can be captured in a few lines of YAML:
app:

 name: my-stack

tasks:

 my-daemon:

 image: mycorp/worker:latest

 type: daemon

This is the core of your intent. From this simple declaration, a whole world of
production-ready infrastructure can be planned and provisioned. This is the promise of
App::FargateStack to let you focus on your container, not the fleet of servers beneath it.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 6

Fargate vs. EC2: A Clear Choice
For decades, the virtual machine—the EC2 instance—has been the default unit of cloud
computing. But for containerized applications, it introduces a layer of unnecessary
operational overhead. You are responsible for provisioning, patching, scaling, and securing
the host OS, all before you even run your first container.

Fargate eliminates this entire class of problems.

Feature AWS Fargate EC2

Provisioning Fully managed—no server
provisioning

Manual—you provision and
manage EC2 instances

Scaling Auto-scales per task
definition

You manage autoscaling groups
or scale manually

IAM
Permissions

Per-task IAM roles Instance-level IAM roles

Pricing Model Pay per task vCPU and
memory

Pay per instance uptime,
regardless of usage

Maintenance None—no OS patching or
AMI management

You are responsible for updates
and security patches

In short, Fargate excels in simplicity and security isolation. It is the ideal platform for modern,
containerized microservices. You should only fall back to EC2 if you need deep, low-level
control over the host environment, such as access to a GPU.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 7

The Cost Argument: Pay for What You Use
The most compelling argument for Fargate comes down to cost, especially for intermittent
workloads like scheduled jobs or services with variable traffic. With EC2, you pay for the
instance to be "on," whether it's doing useful work or sitting idle. With Fargate, you pay only
for the CPU and memory your task consumes, for the seconds it's running.

Consider a simple task that runs for one minute every 15 minutes:

Category Fargate (Intermittent) EC2 t3.small (Always On)

Total compute time 48 hours / month 720 hours / month

Monthly Estimate ~$0.60 ~$18.08

For workloads that aren't running at 100% capacity 24/7, the cost savings are not just
marginal—they are dramatic.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 8

Where App::FargateStack Fits In
Once you've chosen Fargate, the next question is how to manage it. While you can use
verbose tools like Terraform or CloudFormation, a new class of "infrastructure accelerators"
has emerged to simplify the process. App::FargateStack is one such tool, but it occupies a
unique space.

Feature App::FargateStack AWS Copilot CLI AWS App Runner

Core Idea Infrastructure
accelerator

Developer-first
CLI

Fully managed
service

Abstraction Glass Box:
Automates visible
resources

Higher
Abstraction:
Manages CFN
stacks

Black Box: Hides
all infrastructure

Workloads Web, Daemons,
Scheduled & Ad-hoc

Web, Backend,
Scheduled

Web Apps & APIs
only

Transparency Very High: Updates
YAML with live state

High: Resources
are in your
account

Low: You don't see
the underlying
parts

App::FargateStack is the ideal tool for teams who want powerful automation without
sacrificing visibility. It automates the tedious parts of building a Fargate stack but keeps you in
full control, with a transparent view of every resource it creates.

This guide will show you how to harness this power. By pairing the simplicity of Fargate with
the intelligent automation of App::FargateStack, you can build and deploy sophisticated,
production-grade applications faster and more efficiently than ever before.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 9

Chapter 1: Introduction to App::FargateStack
Welcome to the engine room. The preface made the case for why you should build on AWS
Fargate. This chapter introduces the tool that will help you do it: App::FargateStack.

What is App::FargateStack?
App::FargateStack is an opinionated, command-line framework that acts as an infrastructure
accelerator. Its purpose is to automate the creation of all the foundational "plumbing"
required to run containerized applications on Fargate.

It is not a replacement for understanding AWS, but rather a powerful tool that handles the
repetitive, error-prone, and complex parts of infrastructure setup for you. It lets you focus on
your application's intent—what you want to run—while it takes care of the implementation
details, following production-ready best practices.

The Core Philosophy: Configuration as State
The most important concept to understand about App::FargateStack is its "configuration as
state" philosophy. Your entire stack—every task, service, IAM role, and networking
component—is defined in a single YAML file.

This file is not just a set of instructions; it is a living document that represents the desired
state of your infrastructure. The framework's job is to make your AWS environment match
what is described in that file.

This leads to a powerful and transparent workflow.

The plan and apply Workflow
App::FargateStack operates on a two-phase cycle that will be familiar to users of tools like
Terraform:

1.​ plan (The Dry Run): When you run the plan command, the framework reads your
YAML file, inspects your live AWS environment, and performs a discovery process. It
identifies what resources already exist and what needs to be created or updated to
match your configuration. It then presents a clear blueprint of the changes it intends to
make, without actually touching anything in your account.

2.​ apply (The Execution): Once you've reviewed the plan and are confident in the
changes, you run the apply command. The framework then executes the plan, making
the necessary API calls to create, configure, and connect all the resources in your
stack.

Crucially, after a successful apply, the framework updates your YAML file with the real-world
details of the provisioned resources, such as ARNs, IDs, and auto-discovered network
settings. Your configuration file becomes a perfect, up-to-date record of your live

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 10

infrastructure. This idempotency means you can run apply over and over again, and the
framework will only make the changes necessary to bring your stack into alignment with your
configuration.

With this foundation in place, we are now ready to build our first stack.

​

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 11

Chapter 2: Your First Stack - A Guided Tutorial
The best way to understand App::FargateStack is to build something with it. In this chapter, we
will walk through the entire lifecycle of a simple application stack, from generating the initial
configuration to deploying a running service.

Our goal is to deploy a simple daemon service using a pre-existing container image named
helloworld from our ECR repository.

Step 1: Creating the Configuration with create-stack
We begin with the create-stack command. This is a powerful shortcut that generates a starter
YAML configuration file based on a few key pieces of information: the service type, a name for
it, and the container image.

The Command:

App::FargateStack create-stack daemon:test-daemon image:helloworld

The Output:

In this single step, the framework has already done several intelligent things:

●​ Inferred the App Name: It warned us that we didn't provide a top-level application
name and defaulted to using our service name, test-daemon.

●​ Discovered AWS Context: It automatically determined our AWS Account ID
(311974035819) and Region (us-east-1) from our active AWS profile.

●​ Resolved the Image URI: It took our shorthand image name, helloworld, verified that
it exists in our ECR repository, and expanded it to its full, globally unique URI.

This command creates a test-daemon.yml file in our current directory, giving us a perfect
starting point.

Step 2: Planning the Infrastructure with plan
Before we create any resources, we'll perform a dry run using the plan command. This

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 12

command inspects our AWS environment and shows us a complete blueprint of the stack it
intends to build.

The Command:

App::FargateStack plan

(Note: We don't need to specify -c test-daemon.yml because the framework remembers the
last configuration file we worked with.)

The Output (abbreviated):

The plan command gives us a wealth of information:

●​ Discovery: It found an eligible VPC and all the public and private subnets within it.
●​ Blueprint: It clearly states which resources (log group, IAM role, cluster, etc.) will be

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 13

created.
●​ Summary: The final "Required Resources" table is our guarantee—this is the complete

list of what apply will build.

Our test-daemon.yml file has now been updated with all of this discovered information.

Step 3: Provisioning the Stack with apply
Now that we've reviewed the plan, we can provision the infrastructure using the apply
command. This will execute the plan we just saw.

The Command:

App::FargateStack apply

The Output:

The output will look nearly identical to the plan command, but without the (dryrun) warnings.
It will show each resource being created in real-time. The final "Required Resources" table will
now be populated with the actual ARNs and IDs of the newly created resources.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 14

Our infrastructure is now live. All the foundational plumbing is in place.

Step 4: Launching and Verifying the Service
The apply command creates the infrastructure, but it doesn't start the service. This is a
deliberate design choice that separates infrastructure management from application runtime
management.

To launch our daemon the first time, we use the create-service command.

The Command:

App::FargateStack create-service

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 15

This tells ECS to launch one instance of our test-daemon task. Because it's a managed
service, Fargate will ensure it stays running. If the task fails, Fargate will automatically restart
it.

We can immediately check its status:

The Command:

App::FargateStack status

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 16

The Output:

Success! In four commands, we have gone from a simple idea to a fully provisioned, managed,
and running Fargate service.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 17

Chapter 3: The Configuration File in Detail
At the heart of every App::FargateStack deployment is a single YAML file. This configuration
file is the source of truth for your entire stack. While the framework can discover and populate
many of its values for you, understanding the structure of this file is key to unlocking the full
power of the tool.

This chapter provides a section-by-section breakdown of the fargate-stack.yml schema.

Top-Level Configuration
These keys define the overall context and properties of your application stack.
Top-Level Keys

account: 311974035819

profile: sandbox

region: us-east-1

vpc_id: vpc-9526f0ee

app:

 name: test-daemon

domain: my-app.example.com # Required for HTTP/S services

route53:

 profile: dns-management-profile

 zone_id: Z0123456789ABCDEFGHIJ

●​ account, profile, region: Define the AWS account and region where the stack will be
deployed. These are typically discovered and populated for you.

●​ vpc_id: The ID of the VPC to deploy into. If omitted, the framework will attempt to find
a single, eligible VPC in your account.

●​ app: A namespace for application-level metadata.
○​ name (Required): The global name for your application stack. This is used to

derive default names for many resources (e.g., my-app-cluster, my-app-sg).
●​ domain: The fully qualified domain name for your service. This is required if you are

deploying an http or https task.
●​ route53: Configuration for DNS management.

○​ profile: Use this if your Route 53 hosted zones are in a different AWS account
than your Fargate resources.

○​ zone_id: The ID of the Route 53 hosted zone for your domain. If omitted, the
framework will attempt to discover it.

The tasks Section
This is the most important section of the file. It is a map where each key is the name of a

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 18

service or job you want to run, and the value is an object describing its configuration.
tasks:

 test-daemon:

 # Core Configuration

 type: daemon

 image: 311974035819.dkr.ecr.us-east-1.amazonaws.com/helloworld:latest

 # Resource Sizing

 size: medium

 cpu: 1024

 memory: 2048

 # Scheduling (for type: task)

 schedule: 'cron(0 18 * * ? *)'

 # Networking (for type: http/https)

 port: 8080

 # Environment & Secrets

 environment:

 LOG_LEVEL: info

 secrets:

 - /myapp/database/password:DB_PASSWORD

 # Storage

 efs:

 id: fs-12345678

 mount_point: /data

●​ type (Required): Defines the workload pattern. Valid values are:
○​ daemon: A long-running background service.
○​ task: A one-shot or scheduled job.
○​ http / https A web service fronted by an Application Load Balancer.

●​ image (Required): The full URI of the Docker container image to run.
●​ size, cpu, memory: Defines the vCPU and memory allocated to the task. You can

specify a predefined size (e.g., tiny, small, medium) or provide specific cpu and
memory values.

●​ schedule: For tasks of type: task, this key turns it into a scheduled job. The value must
be a valid AWS EventBridge cron() or rate() expression.

●​ port: For http/https services, this specifies the port your container listens on. Defaults

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 19

to 80.
●​ environment: A map of key-value pairs to be injected into the container as

environment variables. Use this for non-sensitive configuration.
●​ secrets: A list of secrets to be securely injected from AWS Secrets Manager.
●​ efs: Configuration for mounting an EFS file system into the container.

By combining these sections, you can define a complete, multi-service application stack in a
single, readable file.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 20

Chapter 4: Core Workload Patterns
While App::FargateStack can orchestrate a wide variety of AWS resources, its primary focus is
on running your containerized applications. The framework supports several distinct workload
patterns, each tailored to a specific use case. Your primary decision when defining a new
service is choosing its type.

This chapter will explore each of the core patterns in detail, with configuration examples and
explanations of the infrastructure that gets provisioned for each.

4.1 Understanding Task Types
The type key in your task configuration is the most important setting. It tells the framework
what kind of application you intend to run and determines the entire set of AWS resources
that will be built to support it.

There are four primary types:

●​ daemon: For long-running background services that should always be active.
App::FargateStack will create an ECS Service to ensure the desired number of tasks is
always running. If a task fails, ECS will automatically launch a replacement. This is ideal
for message queue consumers, data processors, or any persistent background worker.

●​ task: For jobs that run to completion. This is used for two main scenarios:
○​ Ad-Hoc Jobs: You can trigger these manually with the run-task command.

They are perfect for database migrations, one-off administrative scripts, or
debugging.

○​ Scheduled Jobs: By adding a schedule key (e.g., schedule: 'cron(0 18 * * ? *)'),
you transform the task into a recurring job managed by AWS EventBridge. This
is ideal for nightly reports, batch processing, or any cron-like workflow.

●​ http & https: For web applications or APIs. These types tell the framework to provision
a full, production-ready web stack, including:

○​ An Application Load Balancer (ALB) to distribute traffic.
○​ Target Groups and Listener Rules.
○​ An ECS Service to manage the running tasks.
○​ For https it will also provision an ACM certificate and create an alias record in

Route 53 for your custom domain.

In the following sections, we will dive deep into each of these patterns.

4.2 Daemon Services
A daemon is a long-running background process that is not directly accessible from the
internet. These are the workhorses of many application backends, responsible for tasks like
processing messages from an SQS queue, handling data streams, or performing continuous

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 21

calculations.

When you specify type: daemon, you are telling App::FargateStack that you need a resilient,
highly-available service.

Minimal Configuration:
tasks:

 my-queue-processor:

 type: daemon

 image: my-app/queue-processor:1.2.3

What App::FargateStack Provisions:

Based on this simple configuration, the framework creates a robust environment for your
daemon:

●​ ECS Service: This is the key component. An ECS Service is created to ensure that the
desired number of tasks (by default, one) is always running. If your container crashes
or the underlying Fargate infrastructure experiences an issue, the ECS scheduler will
automatically launch a replacement task to maintain availability.

●​ Dedicated IAM Role: A role is created with the necessary permissions for the ECS
agent to pull your image from ECR and write logs to CloudWatch. The policy will be
automatically expanded if you configure other resources like SQS queues or S3
buckets.

●​ CloudWatch Log Group: All stdout and stderr from your container are automatically
streamed to a dedicated log group, allowing for centralized logging and monitoring.

Lifecycle Management:

Because a daemon is a managed service, you interact with it using service-level commands:

●​ App::FargateStack start-service my-queue-processor [count]: Deploys and starts the
service.

●​ App::FargateStack stop-service my-queue-processor: Stops the service by setting its
desired count to zero.

●​ App::FargateStack status my-queue-processor: Checks the health and status of the
running service.

4.3 Tasks: Ad-Hoc and Scheduled Jobs
The task type is the most versatile workload pattern. It represents a container that is designed
to run for a period of time and then exit. Unlike a daemon, a task is not automatically restarted
by an ECS service if it stops.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 22

This pattern serves two distinct but related use cases: running a job on-demand, and running
a job on a recurring schedule.

Ad-Hoc Jobs

An ad-hoc job is a task you trigger manually. This is the perfect pattern for administrative
scripts, database migrations, data import/export routines, or any one-off process.

Minimal Configuration:
tasks:

 db-migration:

 type: task

 image: my-app/db-tools:latest

Lifecycle Management:

You interact with ad-hoc jobs using the run-task command:

●​ App::FargateStack run-task db-migration: Launches a single instance of the task. By
default, the command will wait for the task to complete and stream its logs to your
terminal, which is ideal for monitoring its progress.

●​ App::FargateStack run-task db-migration --no-wait: Launches the task and exits
immediately, allowing the job to run in the background.

Scheduled Jobs

By adding a single schedule key to a task definition, you transform it from an ad-hoc job into a
recurring, scheduled job.

Minimal Configuration:
tasks:

 nightly-report:

 type: task

 image: my-app/report-generator:1.0

 schedule: 'cron(0 2 * * ? *)' # Runs every day at 2:00 AM UTC

What App::FargateStack Provisions:

In addition to the standard resources (IAM Role, Log Group, etc.), specifying a schedule tells
the framework to create and configure AWS EventBridge resources:

●​ EventBridge Rule: An EventBridge rule is created with the schedule you specified.
●​ EventBridge Target: The Fargate cluster and task definition are set as the target for

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 23

the rule. When the schedule is met, EventBridge invokes the Fargate RunTask API to
launch your job.

●​ Dedicated IAM Role for Events: A separate, secure IAM role is created specifically for
EventBridge, granting it the minimum necessary permissions to launch your task on
your behalf.

Lifecycle Management:

While you can still run a scheduled job manually with run-task, you also gain commands to
manage its schedule:

●​ App::FargateStack disable-scheduled-task nightly-report: Pauses the schedule
without deleting any resources.

●​ App::FargateStack enable-scheduled-task nightly-report: Resumes a paused
schedule.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 24

4.4 HTTP & HTTPS Services
This is the most powerful and comprehensive workload pattern in App::FargateStack. When
you need to expose your container to the world (or your internal network) as a web
application or API, you will use the http or https type.

This tells the framework to provision a complete, production-ready, and load-balanced web
stack.

Minimal Configuration:
app:

 name: my-web-app

domain: my-app.example.com # Required for http/https services

route53:

 zone_id: Z0123456789ABCDEFGHIJ # Required if not discoverable

tasks:

 apache-web-server:

 type: https

 image: my-company/web-app:production

What App::FargateStack Provisions:

This is where the framework's role as an "infrastructure accelerator" is most apparent. Based
on this simple configuration, it provisions and connects an entire suite of AWS resources:

●​ Application Load Balancer (ALB): An ALB is either discovered or created to act as
the front door for your application. For https services, it will be an internet-facing ALB
in public subnets. For http services, it will be an internal ALB for private traffic.

●​ Target Group & Listener Rules: The framework configures a target group to route
traffic to your Fargate tasks and creates listener rules on the ALB (e.g., on port 443 for
HTTPS) to direct traffic based on the hostname.

●​ ECS Service: Just like a daemon, an ECS Service is created to ensure your web server
tasks are always running and are automatically replaced if they fail.

●​ Security Groups: Multiple security groups are created and configured to allow traffic
to flow securely from the ALB to your Fargate tasks, while blocking all other access.

●​ Route 53 Alias Record: An A record is created in your hosted zone, pointing your
custom domain (my-app.example.com) to the ALB.

●​ ACM Certificate (for https only): If you specify type: https, the framework will
automatically provision a free, auto-renewing SSL/TLS certificate from AWS Certificate
Manager and attach it to the ALB listener, enabling secure traffic.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 25

Architectural Flow
The architecture follows a standard, secure pattern for web services on AWS.

 Internet
 |

 V
+--+
| AWS Cloud |
| |
| +----------+ +------------------+ |
| | Route 53 |----->| App Load Balancer| |
| | (DNS) | | (Public Subnet) | |
| +----------+ +-------+----------+ |
| | |
| V |
| +---------------+ |
| | Target Group | |
| +-------+-------+ |
| | |
| V |
| +---------------------------------------+ |
| | Fargate Task 1 | Fargate Task 2 | ... | |
| | (Private Subnet) | |
| +---------------------------------------+ |
| |
+--+

1.​ User Request & DNS:
○​ An Internet Client makes a request to your domain (e.g.,

my-app.example.com).
○​ Route 53 receives the request, looks up the A (Alias) record for your domain,

and resolves it to the DNS name of the Application Load Balancer.
2.​ Load Balancing & Security:

○​ The request hits the Application Load Balancer (ALB), which lives in your
VPC's Public Subnets.

○​ The ALB's Listener on port 443 (HTTPS) receives the traffic.
○​ An ACM Certificate attached to the listener terminates the SSL/TLS

connection, decrypting the request.
○​ A rule on the listener forwards the decrypted traffic to a specific Target Group.

3.​ Application Tier:
○​ The Target Group routes the traffic to a healthy Fargate task. It knows the

private IP addresses of your containers and continuously monitors their health.
○​ Your Fargate Tasks (containers) run securely in the VPC's Private Subnets.

They do not have public IP addresses and cannot be reached directly from the
internet.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 26

○​ An ECS Service ensures that the desired number of tasks is always running. If
a task fails, the service replaces it automatically.

Lifecycle Management:

Like daemons, HTTP/S services are managed with service-level commands:

●​ App::FargateStack start-service apache-web-server [count]: Deploys and starts the
web service.

●​ App::FargateStack stop-service apache-web-server: Stops the service.
●​ App::FargateStack status apache-web-server: Checks the health and status of the

running service and its tasks.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 27

Chapter 5: Advanced Topics & Integrations
With a solid understanding of the core workload patterns, we can now explore the more
advanced features of App::FargateStack. This chapter delves into the details of how the
framework handles networking, security, storage, and messaging.

These are the components that elevate your application from a simple container into a
fully-featured, production-grade stack. While the framework provides sensible defaults for all
of these, understanding how to configure them is key to customizing your deployment for your
specific needs.

5.1 Networking: VPC and Subnet Discovery
Proper networking is the foundation of any secure and scalable cloud application.
App::FargateStack is designed to work with your existing network infrastructure, intelligently
discovering and utilizing your VPCs and subnets.

VPC Discovery

If you do not specify a vpc_id in your configuration file, the framework will automatically scan
your AWS account to find an eligible VPC. A VPC is considered "eligible" if it has the necessary
components for Fargate tasks to function, namely:

●​ An Internet Gateway (IGW) to allow communication with the outside world.
●​ At least one NAT Gateway, which enables tasks in private subnets to initiate outbound

connections (e.g., to pull container images or call external APIs).

If exactly one eligible VPC is found, App::FargateStack will use it by default and update your
configuration file with its ID. If multiple eligible VPCs are found, the plan will fail with an error,
prompting you to resolve the ambiguity by explicitly setting the vpc_id in your configuration.

Subnet Categorization

Once a VPC is selected, the framework inspects its route tables to categorize every subnet as
either public or private.

●​ Public Subnets: Have a direct route to an Internet Gateway. Resources in a public
subnet can be directly accessible from the internet.

●​ Private Subnets: Have a route to a NAT Gateway, but not an Internet Gateway.
Resources in a private subnet can make outbound connections to the internet, but the
internet cannot initiate connections to them.

This discovery process is crucial. The framework uses this information to follow best practices
for task placement. For example, https services will have their load balancers placed in public
subnets, while the Fargate tasks themselves are placed in private subnets for security. The

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 28

discovered subnets are automatically added to your configuration file.

5.2 Security: IAM, Security Groups, and Secrets
App::FargateStack is built on the principle of "secure by default." It automates the creation of
IAM roles, policies, and security groups to ensure your application adheres to the principle of
least privilege.

IAM Roles and Policies

The framework creates a single IAM role for all tasks within a stack. This role is automatically
granted the minimum permissions required for your tasks to function, based on the resources
you define in your configuration file.

●​ Automatic Policy Generation: You do not need to write IAM policies by hand. If you
define an SQS queue, the framework adds sqs:* permissions for that specific queue to
the role. If you define an S3 bucket, it adds the appropriate S3 permissions. This
dynamic policy generation ensures your tasks have exactly the permissions they need,
and no more.

●​ Trust Relationships: The framework automatically configures the trust policy, allowing
the ECS service to assume the role on your behalf. For scheduled jobs, a separate,
even more restrictive role is created for EventBridge.

Security Groups

A dedicated security group is provisioned for your Fargate cluster. By default, this group has
no inbound rules and allows all outbound traffic. Ingress rules are added automatically based
on your task configuration. For example, if you create an https service, a rule is added to allow
inbound traffic on the container port only from the Application Load Balancer's security
group. This ensures that the only traffic reaching your tasks is the traffic that has been
processed by the load balancer.

Injecting Secrets from Secrets Manager

Placing sensitive information like database passwords or API keys directly into your
configuration file or environment variables is a security risk. App::FargateStack integrates
directly with AWS Secrets Manager to solve this problem.

You can securely inject secrets into your container's environment by defining a secrets block
in your task configuration.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 29

Configuration:
tasks:

 my-worker:

 type: daemon

 image: my-app/worker:latest

 secrets:

 - /my-app/prod/database/password:DB_PASSWORD

How it Works:

For each entry, the framework will:

1.​ Look up the secret /my-app/prod/database/password in Secrets Manager.
2.​ Grant the task's IAM role permission to read this specific secret.
3.​ Inject the value of the secret into the container's environment as the DB_PASSWORD

environment variable.

This process is secure because the secret's value is never written to the task definition or your
configuration file. It is fetched securely by the ECS agent at runtime and passed directly to
your container.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 30

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 31

5.3 Storage: S3 Buckets and EFS Mounts

For many applications, ephemeral container storage isn't enough. App::FargateStack provides
first-class integrations for two primary AWS storage services: Amazon S3 for object storage
and Amazon EFS for shared file system storage.

S3 Buckets

You can define a single S3 bucket for your stack, which is useful for storing user uploads, logs,
or application artifacts. The framework will either create a new bucket or use an existing one,
and it will automatically configure the necessary IAM permissions.

Configuration:
bucket:

 name: my-app-data-bucket

 readonly: true # Optional: defaults to false

 paths: # Optional: restricts access to specific prefixes

 - public/*

 - processed/*

●​ name: The globally unique name for your S3 bucket.
●​ readonly: If set to true, tasks will only be granted s3:GetObject and s3:ListBucket

permissions. If false (the default), full read/write permissions are granted.
●​ paths: An optional list of key prefixes. If specified, the IAM policy will be scoped down

to allow access only to objects within these prefixes.

EFS File Systems

When you need a persistent, shared file system that can be mounted by multiple tasks
simultaneously, EFS is the solution. This is ideal for content management systems, shared data
processing workloads, or any application that needs a traditional file system.

App::FargateStack does not provision the EFS file system itself, but it will validate that an
existing file system is available and configure your tasks to use it.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 32

Configuration (within a task definition):
tasks:

 my-cms-app:

 type: https

 image: my-company/cms:latest

 efs:

 id: fs-12345678 # The ID of your existing EFS file system

 mount_point: /var/www/html/uploads # Path inside the container

 path: /app-uploads # Path on the EFS volume

 readonly: false

 authorize_ingress: true # Optional: Automates security group rules

Based on this configuration, the framework will automatically:

1.​ Update IAM Policies: Grant the task's IAM role the necessary permissions to connect
to and interact with the specified EFS file system.

2.​ Configure Task Definitions: Add the volume and mount point configuration to the
ECS task definition, making the file system available inside your container.

Automating Network Access with authorize_ingress

For a Fargate task to successfully mount an EFS volume, the security groups must be
configured to allow NFS traffic (on TCP port 2049) between them. This is a common point of
failure, as a missing rule will cause the task to fail to start with a timeout error.

To solve this, App::FargateStack offers the authorize_ingress flag. When you set
authorize_ingress: true, the framework will:

●​ Discover the security group(s) attached to the EFS mount targets.
●​ Automatically add an inbound rule to each EFS security group, allowing traffic on

port 2049 specifically from the Fargate task's security group.
●​ Automatically revoke this rule when you delete the task, ensuring your security

posture remains clean.

This opt-in feature automates a critical but error-prone step, turning a frustrating networking
problem into a simple configuration flag.

5.4 Messaging: SQS Queues
For applications that rely on asynchronous processing, App::FargateStack provides built-in
support for Amazon SQS. You can define a primary queue for your stack and an optional Dead

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 33

Letter Queue (DLQ) to handle failed messages.

Configuration:
queue:

 name: my-app-work-queue

 max_receive_count: 5 # This key automatically enables a DLQ

dlq:

 name: my-app-work-queue-dlq # Optional: defaults to <queue_name>-dlq

●​ queue: Defines the primary SQS queue.
○​ name: The name of your queue.
○​ max_receive_count: This is the magic key. If you define it, the framework will

automatically provision a DLQ and configure the main queue's redrive policy to
send messages there after the specified number of failed processing attempts.

●​ dlq: An optional block to customize the Dead Letter Queue. If omitted, a DLQ will still
be created with a default name if max_receive_count is set.

As with other resources, the framework automatically updates the stack's IAM policy to grant
tasks full access to the created queues.

Custom Queue Attributes

While the framework provides sensible defaults for queue attributes, you have full control to
override them. You can specify any valid SQS queue attribute directly in the queue or dlq
configuration blocks.

Example:
queue:

 name: fu-man-q

 visibility_timeout: 60

 delay_seconds: 5

 receive_message_wait_time_seconds: 20

 message_retention_period: 1209600 # 14 days

 maximum_message_size: 262144

 max_receive_count: 5

This gives you the flexibility to tune your queues for specific use cases, such as long polling or
larger message sizes, without leaving the simple YAML configuration.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 34

5.5 Environment Variables & Secrets
Injecting configuration into your container at runtime is a fundamental requirement for
building flexible applications. App::FargateStack provides two distinct mechanisms for this,
each designed for a specific type of data: the environment block for non-sensitive
configuration, and the secrets block for sensitive data.

The environment Block: For Non-Sensitive Configuration

The environment block is a simple key-value map that injects standard environment variables
into your container. This is the ideal place for non-sensitive, application-level configuration
that you might want to change between environments.

Use Cases:

●​ Setting a LOG_LEVEL for your application.
●​ Specifying an ENVIRONMENT name like development or production.
●​ Passing feature flags or other runtime toggles.

Configuration (within a task definition):
tasks:

 my-worker:

 type: daemon

 image: my-app/worker:latest

 environment:

 LOG_LEVEL: info

 FEATURE_FLAG_X: true

Security Note: Values in the environment block are stored in plaintext in the ECS task
definition. Never place passwords, API keys, or any other sensitive credentials in this section.

The secrets Block: For Sensitive Credentials

For sensitive data, App::FargateStack provides a secure integration with AWS Secrets
Manager. This mechanism ensures that your secrets are never exposed in plaintext.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 35

Configuration (within a task definition):

tasks:
 my-worker:

 type: daemon

 image: my-app/worker:latest

 secrets:

 - /my-app/prod/database/password:DB_PASSWORD

 - /my-app/prod/api-key:THIRD_PARTY_API_KEY

When you use the secrets block, the framework automatically updates the task's IAM role to
grant read access to those specific secrets. At runtime, the ECS agent securely fetches the
secret values and injects them into your container as environment variables, just like the
environment block. The crucial difference is that the values themselves are never visible in any
configuration file or task definition.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 36

Chapter 6: Command Reference
This chapter provides a detailed reference for every command available in the
App::FargateStack CLI. While the plan and apply commands are the core of the workflow,
these utilities give you fine-grained control over the entire lifecycle of your application stack.

Core Workflow Commands
These are the primary commands you will use to manage your infrastructure.

plan

Usage: App::FargateStack plan

Performs a dry run. It reads your configuration file, inspects your live AWS environment, and
produces a detailed report of the resources it will create or update. No changes are made to
your AWS account. This command is essential for safely reviewing changes before they are
executed.

apply

Usage: App::FargateStack apply

Provisions or updates your infrastructure to match the state defined in your configuration file.
It executes the blueprint generated by the plan command. After a successful run, your YAML
configuration file is updated with the ARNs and IDs of the provisioned resources.

Service & Task Lifecycle Commands
These commands are used to manage the runtime state of your applications.

start-service

Usage: App::FargateStack start-service [service-name] [count]

Starts an ECS service (for daemon, http, or https types). The count parameter specifies the
desired number of running tasks (defaults to 1).

stop-service

Usage: App::FargateStack stop-service [service-name]

Stops a running service by setting its desired task count to 0. The underlying infrastructure is
not removed.

redeploy

Usage: App::FargateStack redeploy [service-name]

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 37

Forces a new deployment of a running service. This is useful for forcing ECS to pull the latest
version of a container image tag (e.g., :latest) without creating a new task definition revision.

run-task

Usage: App::FargateStack run-task [task-name]

Launches a one-shot, ad-hoc task (for type: task). By default, it waits for the task to complete
and streams its logs. Use --no-wait to run the task in the background.

stop-task

Usage: App::FargateStack stop-task [task-arn|task-id]

Stops a specific, running Fargate task. You can get the task ID from the list-tasks command.

State & Information Commands
These commands help you inspect and manage your stack.

status

Usage: App::FargateStack status [service-name]

Displays the current status of a running service, including the desired and running task
counts, and the most recent service events.

list-tasks

Usage: App::FargateStack list-tasks [stoppped]

Lists all currently running or stopped tasks in your cluster, showing their status, resource
utilization, and start time.

logs

Usage: App::FargateStack logs [task-name] [start-time] [end-time]

Streams logs from CloudWatch for a specific task. You can specify a time range (e.g., 5m for
the last 5 minutes) and use --log-wait to tail the logs in real-time.

state

Usage: App::FargateStack state [config-file.yml]

Manages the default configuration file used by the framework. Running it without an argument
shows the current defaults. Providing a filename sets it as the new default.

Configuration & Definition Commands

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 38

These commands are used for managing the underlying definitions of your services.

create-stack

Usage: App::FargateStack create-stack [app-name] daemon:my-daemon image:my-image ...

Generates a new fargate-stack.yml configuration file from a shorthand syntax. This is the
fastest way to get started with a new project.

register-task-definition

Usage: App::FargateStack register-task-definition [task-name]

Forces the creation of a new revision of an ECS task definition. This is typically done
automatically by plan and apply, but can be run manually if needed.

update-service

Usage: App::FargateStack update-service [service-name]

Updates an ECS service to use the latest registered task definition revision. This is the key
command for deploying a new version of your application image.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 39

Chapter 7: Continue Your Fargate Journey
You've reached the end of this guide, but you're at the beginning of a new way of building on
AWS. You've seen how to take a containerized application and, with a few simple commands,
deploy it onto a robust, secure, and scalable infrastructure. More importantly, you've seen
that the magic behind it isn't magic at all—it's just intelligent, transparent automation.
App::FargateStack is the expert builder that assembles the plumbing for you, but it always
leaves the blueprints on the table for you to inspect, learn from, and modify.

The goal of this guide was to empower you to build on Fargate with confidence. The real
journey begins now, as you take these patterns and apply them to your own unique
challenges. As you do, you may want to dive deeper into the underlying AWS services that
make all of this possible.

Valuable Resources for Deeper Learning
To continue your journey from a builder to a Fargate expert, here are some of the best
resources available directly from AWS:

●​ The Official AWS Fargate User Guide: This is the definitive source of truth for all
things Fargate. When you need to understand a specific feature or behavior in detail,
this is the first place to look.

○​ AWS Fargate User Guide
●​ ECS Workshop for Fargate: For hands-on learning that goes beyond this guide, the

official ECS Workshop is an invaluable, self-paced lab that covers a wide range of
Fargate scenarios.

○​ ECS Workshop
●​ AWS Containers Blog: The official AWS blog is the best place to learn about new

features, advanced architectural patterns, and best practices from the AWS product
teams and expert solution architects.

○​ AWS Containers Blog
●​ AWS Whitepapers & Guides: For deep architectural guidance, the whitepapers

provide comprehensive and authoritative information on building well-architected
systems.

○​ AWS Whitepapers & Guides

Join the Community
App::FargateStack is an open-source project, and its future will be shaped by builders like
you. If you have ideas for new features, find a bug, or want to contribute to the code or
documentation, your participation is welcome.

●​ Report Issues & Request Features: App::FargateStack GitHub Issues

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 40

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://ecsworkshop.com/
https://aws.amazon.com/blogs/containers/
https://aws.amazon.com/whitepapers/
https://github.com/rlauer6/App-FargateStack/issues

Thank you for joining us on this journey. Now, go build something amazing.

AWS Fargate with App::FargateStack - A Builder’s Guide​ ​ ​ ​ ​ 41

	
	
	
	
	
	
	
	AWS Fargate with App::FargateStack
	A Builder's Guide
	By Rob Lauer
	Version 1.0.34What Is Fargate?

	What is App::FargateStack?
	The App::FargateStack Philosophy
	Preface: Why Fargate Deserves a Second Look
	The Simplicity of Intent
	
	Fargate vs. EC2: A Clear Choice
	The Cost Argument: Pay for What You Use
	
	Where App::FargateStack Fits In

	Chapter 1: Introduction to App::FargateStack
	What is App::FargateStack?
	The Core Philosophy: Configuration as State
	The plan and apply Workflow

	Chapter 2: Your First Stack - A Guided Tutorial
	Step 1: Creating the Configuration with create-stack
	Step 2: Planning the Infrastructure with plan
	Step 3: Provisioning the Stack with apply
	Step 4: Launching and Verifying the Service

	Chapter 3: The Configuration File in Detail
	Top-Level Configuration
	The tasks Section

	Chapter 4: Core Workload Patterns
	4.1 Understanding Task Types
	4.2 Daemon Services
	4.3 Tasks: Ad-Hoc and Scheduled Jobs
	Ad-Hoc Jobs
	Scheduled Jobs

	4.4 HTTP & HTTPS Services
	Architectural Flow

	Chapter 5: Advanced Topics & Integrations
	5.1 Networking: VPC and Subnet Discovery
	VPC Discovery
	Subnet Categorization

	5.2 Security: IAM, Security Groups, and Secrets
	IAM Roles and Policies
	Security Groups
	Injecting Secrets from Secrets Manager
	S3 Buckets
	EFS File Systems
	Automating Network Access with authorize_ingress

	5.4 Messaging: SQS Queues
	Custom Queue Attributes

	5.5 Environment Variables & Secrets
	The environment Block: For Non-Sensitive Configuration
	The secrets Block: For Sensitive Credentials

	Chapter 6: Command Reference
	Core Workflow Commands
	plan
	apply

	Service & Task Lifecycle Commands
	start-service
	stop-service
	redeploy
	run-task
	stop-task

	State & Information Commands
	status
	list-tasks
	logs
	state

	Configuration & Definition Commands
	create-stack
	register-task-definition
	update-service

	Chapter 7: Continue Your Fargate Journey
	Valuable Resources for Deeper Learning
	Join the Community

